skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Adams, Douglas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We develop a new methodology for extracting Compton form factors (CFFs) from deeply virtual exclusive reactions such as the unpolarized DVCS cross section using a specialized inverse problem solver, a variational autoencoder inverse mapper (VAIM). The VAIM-CFF framework not only allows us access to a fitted solution set possibly containing multiple solutions in the extraction of all 8 CFFs from a single cross section measurement, but also accesses the lost information contained in the forward mapping from CFFs to cross section. We investigate various assumptions and their effects on the predicted CFFs such as cross section organization, number of extracted CFFs, use of uncertainty quantification technique, and inclusion of prior physics information. We then use dimensionality reduction techniques such as principal component analysis to visualize the missing physics information tracked in the latent space of the VAIM framework. Through re-framing the extraction of CFFs as an inverse problem, we gain access to fundamental properties of the problem not comprehensible in standard fitting methodologies: exploring the limits of the information encoded in deeply virtual exclusive experiments. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. One of the challenging problems in large scale cyber-argumentation platforms is that users often engage and focus only on a few issues and leave other issues under-discussed and under-acknowledged. This kind of non-uniform participation obstructs the argumentation analysis models to retrieve collective intelligence from the underlying discussion. To resolve this problem, we developed an innovative opinion prediction model for a multi-issue cyber-argumentation environment. Our model predicts users’ opinions on the non-participated issues from similar users’ opinions on related issues using intelligent argumentation techniques and a collaborative filtering method. Based on our detailed experimental results on an empirical dataset collected using our cyber-argumentation platform, our model is 21.7% more accurate, handles data sparsity better than other popular opinion prediction methods. Our model can also predict opinions on multiple issues simultaneously with reasonable accuracy. Contrary to existing opinion prediction models, which only predict whether a user agrees on an issue, our model predicts how much a user agrees on the issue. To our knowledge, this is the first research to attempt multi-issue opinion prediction with the partial agreement in the cyber-argumentation platform. With additional data on non-participated issues, our opinion prediction model can help the collective intelligence analysis models to analyze social phenomena more effectively and accurately in the cyber argumentation platform. 
    more » « less